A short note on the true self-avoiding walk

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1985 J. Phys. A: Math. Gen. 18 L299
(http://iopscience.iop.org/0305-4470/18/6/007)

View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 31/05/2010 at 09:32

Please note that terms and conditions apply.

LETTER TO THE EDITOR

A short note on the true self-avoiding walk

Hans Christian Öttinger
Fakultät für Physik der Universität Freiburg, Hermann-Herder-Strasse 3, D-7800 Freiburg, West Germany

Received 8 October 1984

Abstract

The scaling laws for the true self-avoiding walk and a Fokker-Planck equation for the end-to-end probability distribution are combined in order to calculate the scaling functions and the end-to-end distance in one dimension explicitly.

In a recent letter Obukhov (1984) obtained a partial differential equation for the dependence of the end-to-end probability distribution $P_{N}(x)$ on the number of steps N of the walk and the position x for the one-dimensional true self-avoiding walk (TSAW; Amit et al 1983) in the case of small self-avoidance parameter g :

$$
\begin{equation*}
\frac{\partial P_{N}(x)}{\partial N}=\frac{1}{2} \frac{\partial^{2} P_{N}(x)}{\partial x^{2}}-\frac{\partial}{\partial x}\left(b(x) P_{N}(x)\right) \tag{1}
\end{equation*}
$$

(in the limit of large N the variables N and x can be treated as continuous variables). The first term on the right-hand side of the Fokker-Planck equation (1) represents a random diffusion whereas the second term describes a drift, which for the TSAW is defined by the gradient of the total number of previous visits $n_{N}(x)$ of point x (the TSAW tries to avoid places already visited):

$$
\begin{equation*}
b(x)=-2 g \partial n_{N}(x) / \partial x . \tag{2}
\end{equation*}
$$

In this letter the consequences of these equations will be analysed in more detail.
Equations (1) and (2) can be combined with the scaling laws (Pietronero 1983, Bernasconi and Pietronero 1984)

$$
\begin{align*}
& P_{N}(x)=\left(1 / R_{N}\right) f\left(x / R_{N}\right) \tag{3}\\
& n_{N}(x)=\left(N / R_{N}\right) h\left(x / R_{N}\right) \tag{4}
\end{align*}
$$

where

$$
\begin{equation*}
R_{N}=\lambda_{\mathbf{g}} N^{\nu} \tag{5}
\end{equation*}
$$

is the root-mean-square displacement and f and h are normalised universal functions. Using the relation

$$
\begin{equation*}
n_{N}(x)=\int_{0}^{N} \operatorname{dn} P_{N}(x) \tag{6}
\end{equation*}
$$

one can express the function f in terms of h :

$$
\begin{equation*}
f(z)=(1-\nu) h(z)-\nu z h^{\prime}(z) \tag{7}
\end{equation*}
$$

Inserting the scaling laws (3) and (4) into Obukhov's equations (1) and (2) one obtains (with $z=x / R_{N}$)

$$
\begin{align*}
-\nu(d f(z)+ & z f^{\prime}(z) \\
= & \frac{N^{1-2 \nu}}{2 \lambda_{g}^{2}}\left[f^{\prime \prime}(z)+(d-1) f^{\prime}(z) / z\right] \\
& +2 g \frac{N^{2-\nu(d+2)}}{\lambda_{g}^{d+2}}\left(h^{\prime \prime}(z) f(z)+h^{\prime}(z) f^{\prime}(z)+(d-1) h^{\prime}(z) f(z) / z\right) \tag{8}
\end{align*}
$$

where the preceding equations have been generalised to arbitrary dimension d (Pietronero 1983). Provided that the asymptotic behaviour of the TSAW is determined by the self-avoidance, the second term on the right-hand side of equation (8) has to be of the same order of magnitude as the left-hand side (in the limit $N \rightarrow \infty$) and Pietronero's (1983) famous result $\nu=2 /(d+2)$ follows from (8) (this result was rederived by Family and Daoud (1984)). However, for $\nu=\frac{1}{2}(d=2)$ the first term on the right-hand side of equation (8) becomes relevant and above the upper critical dimension $d_{c}=2$ one finds pure random-walk behaviour (the second term is negligible for $N \rightarrow \infty$). Below $d_{c}=2$ the diffusion term with $\nu=\frac{1}{2}$ can be neglected except for $g=0$ (in agreement with the renormalisation group picture (de Queiroz et al 1984)).

Only the case $d=1$ will be considered in the following. By integration of equation (8) in this case one obtains (the constant of integration vanishes because of the normalisation of f and h)

$$
\begin{equation*}
h^{\prime}(z) f(z)=-\left(\lambda_{g}^{3} / 3 g\right) z f(z) \tag{9}
\end{equation*}
$$

Because the universal functions f and h have to be independent of g, one concludes from (9) that

$$
\begin{equation*}
\lambda_{g} \sim g^{1 / 3} \tag{10}
\end{equation*}
$$

(for arbitrary $d<d_{\mathrm{c}}$ one concludes from (8) that $\lambda_{g} \sim g^{1 /(2+d)}$). This relation was confirmed by Rammal et al (1984) by means of a Monte Carlo simulation.

Using the fact that due to equation (7) one has $f(z)=0$ for $h(z)=0$ (the more general solution $h(z)=c \sqrt{z}$ compatible with $f(z)=0$ is unphysical) one obtains the normalised, positive and continuous solution of (9)

$$
h(z)= \begin{cases}\frac{3}{4 z_{0}}\left(1-\frac{z^{2}}{z_{0}^{2}}\right) & \text { for }|z|<z_{0} \tag{11}\\ 0 & \text { for }|z| \geqslant z_{0}\end{cases}
$$

where the constant z_{0} is defined by

$$
\begin{equation*}
z_{0}=\left(\frac{9}{2} g\right)^{1 / 3} / \lambda_{g} . \tag{12}
\end{equation*}
$$

If one calculates R_{N} by means of equations (3), (7) and (11) the free constants z_{0} and λ_{1} are fixed for reasons of consistency:

$$
\begin{equation*}
z_{0}=\left(\frac{15}{7}\right)^{1 / 2} \approx 1.46 \quad \lambda_{1}=\left(\frac{1029}{500}\right)^{1 / 6} \approx 1.13 . \tag{13}
\end{equation*}
$$

This value for λ_{1} is slightly but appreciably smaller than the Monte Carlo value $\lambda_{1}=1.50 \pm 0.02$ (estimated from a simulation with $g=0.1$). Furthermore, the form (11) of $h(z)$ disagrees with Monte Carlo data (see figure 3 of the paper by Bernasconi and

Pietronero (1984)) and produces a discontinuous function $f(z)$ which increases as z^{2} around $z=0$ and jumps to zero at $|z|=z_{0}$.

In conclusion, the Fokker-Planck equation derived by Obukhov (1984) predicts (combined with scaling laws) the value of the exponent ν in $R_{N}=\lambda_{8} N^{\nu}$ very precisely and the constant λ_{g} quite well, but fails to describe the correct form of the scaling functions in one dimension. This might be for two reasons. Firstly, it might be necessary to keep higher-order terms in g in the derivation of the Fokker-Planck equation (1). Secondly, instead of using the distribution $n_{N}(x)$ one should use a conditional distribution of two variables x and y in the derivation of (1) and (2), namely the number of previous visits of point x provided that the TSAW ends at point y after N steps.

I would like to thank Professor Dr J Honerkamp for stimulating my interest in polymer physics.

References

Amit D, Parisi G and Peliti L 1983 Phys. Rev. B 271635
Bernasconi J and Pietronero L 1984 Phys. Rev. B 295196
de Queiroz S L A, Stella A L and Stinchcombe R B 1984 J. Phys. A: Math. Gen. 17 L45
Family F and Daoud M 1984 Phys. Rev. B 291506
Obukhov S P 1984 J. Phys. A: Math. Gen. 17 L7
Pietronero L 1983 Phys. Rev. B 275887
Rammal R, Angles d'Auriac J C and Benott A 1984 J. Phys. A: Math. Gen. 17 L9

