

Home Search Collections Journals About Contact us My IOPscience

A short note on the true self-avoiding walk

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 1985 J. Phys. A: Math. Gen. 18 L299 (http://iopscience.iop.org/0305-4470/18/6/007)

View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 129.252.86.83 The article was downloaded on 31/05/2010 at 09:32

Please note that terms and conditions apply.

## LETTER TO THE EDITOR

## A short note on the true self-avoiding walk

Hans Christian Öttinger

Fakultät für Physik der Universität Freiburg, Hermann-Herder-Strasse 3, D-7800 Freiburg, West Germany

Received 8 October 1984

**Abstract.** The scaling laws for the true self-avoiding walk and a Fokker-Planck equation for the end-to-end probability distribution are combined in order to calculate the scaling functions and the end-to-end distance in one dimension explicitly.

In a recent letter Obukhov (1984) obtained a partial differential equation for the dependence of the end-to-end probability distribution  $P_N(x)$  on the number of steps N of the walk and the position x for the one-dimensional true self-avoiding walk (TSAW; Amit *et al* 1983) in the case of small self-avoidance parameter g:

$$\frac{\partial P_N(x)}{\partial N} = \frac{1}{2} \frac{\partial^2 P_N(x)}{\partial x^2} - \frac{\partial}{\partial x} (b(x) P_N(x))$$
(1)

(in the limit of large N the variables N and x can be treated as continuous variables). The first term on the right-hand side of the Fokker-Planck equation (1) represents a random diffusion whereas the second term describes a drift, which for the TSAW is defined by the gradient of the total number of previous visits  $n_N(x)$  of point x (the TSAW tries to avoid places already visited):

$$b(\mathbf{x}) = -2g \,\partial n_N(\mathbf{x})/\partial \mathbf{x}.\tag{2}$$

In this letter the consequences of these equations will be analysed in more detail.

Equations (1) and (2) can be combined with the scaling laws (Pietronero 1983, Bernasconi and Pietronero 1984)

$$P_{N}(x) = (1/R_{N})f(x/R_{N})$$
(3)

$$n_N(x) = (N/R_N)h(x/R_N) \tag{4}$$

where

$$R_N = \lambda_g N^{\nu} \tag{5}$$

is the root-mean-square displacement and f and h are normalised universal functions. Using the relation

$$n_N(x) = \int_0^N \mathrm{d}n \, P_N(x) \tag{6}$$

one can express the function f in terms of h:

$$f(z) = (1 - \nu)h(z) - \nu z h'(z).$$
(7)

0305-4470/85/060299+03\$02.25 © 1985 The Institute of Physics L299

Inserting the scaling laws (3) and (4) into Obukhov's equations (1) and (2) one obtains (with  $z = x/R_N$ )

$$-\nu(df(z) + zf'(z)) = \frac{N^{1-2\nu}}{2\lambda_g^2} [f''(z) + (d-1)f'(z)/z] + 2g \frac{N^{2-\nu(d+2)}}{\lambda_g^{d+2}} (h''(z)f(z) + h'(z)f'(z) + (d-1)h'(z)f(z)/z)$$
(8)

where the preceding equations have been generalised to arbitrary dimension d (Pietronero 1983). Provided that the asymptotic behaviour of the TSAW is determined by the self-avoidance, the second term on the right-hand side of equation (8) has to be of the same order of magnitude as the left-hand side (in the limit  $N \rightarrow \infty$ ) and Pietronero's (1983) famous result  $\nu = 2/(d+2)$  follows from (8) (this result was rederived by Family and Daoud (1984)). However, for  $\nu = \frac{1}{2}$  (d = 2) the first term on the right-hand side of equation (8) becomes relevant and above the upper critical dimension  $d_c = 2$  one finds pure random-walk behaviour (the second term is negligible for  $N \rightarrow \infty$ ). Below  $d_c = 2$  the diffusion term with  $\nu = \frac{1}{2}$  can be neglected except for g = 0 (in agreement with the renormalisation group picture (de Queiroz *et al* 1984)).

Only the case d = 1 will be considered in the following. By integration of equation (8) in this case one obtains (the constant of integration vanishes because of the normalisation of f and h)

$$h'(z)f(z) = -(\lambda_g^3/3g)zf(z).$$
(9)

Because the universal functions f and h have to be independent of g, one concludes from (9) that

$$\lambda_g \sim g^{1/3} \tag{10}$$

(for arbitrary  $d < d_c$  one concludes from (8) that  $\lambda_g \sim g^{1/(2+d)}$ ). This relation was confirmed by Rammal *et al* (1984) by means of a Monte Carlo simulation.

Using the fact that due to equation (7) one has f(z) = 0 for h(z) = 0 (the more general solution  $h(z) = c\sqrt{z}$  compatible with f(z) = 0 is unphysical) one obtains the normalised, positive and continuous solution of (9)

$$h(z) = \begin{cases} \frac{3}{4z_0} \left( 1 - \frac{z^2}{z_0^2} \right) & \text{for } |z| < z_0 \\ 0 & \text{for } |z| \ge z_0 \end{cases}$$
(11)

where the constant  $z_0$  is defined by

$$z_0 = (\frac{9}{2}g)^{1/3} / \lambda_g.$$
 (12)

If one calculates  $R_N$  by means of equations (3), (7) and (11) the free constants  $z_0$  and  $\lambda_1$  are fixed for reasons of consistency:

$$z_0 = (\frac{15}{7})^{1/2} \approx 1.46$$
  $\lambda_1 = (\frac{1029}{500})^{1/6} \approx 1.13.$  (13)

This value for  $\lambda_1$  is slightly but appreciably smaller than the Monte Carlo value  $\lambda_1 = 1.50 \pm 0.02$  (estimated from a simulation with g = 0.1). Furthermore, the form (11) of h(z) disagrees with Monte Carlo data (see figure 3 of the paper by Bernasconi and

Pietronero (1984)) and produces a discontinuous function f(z) which increases as  $z^2$  around z = 0 and jumps to zero at  $|z| = z_0$ .

In conclusion, the Fokker-Planck equation derived by Obukhov (1984) predicts (combined with scaling laws) the value of the exponent  $\nu$  in  $R_N = \lambda_g N^{\nu}$  very precisely and the constant  $\lambda_g$  quite well, but fails to describe the correct form of the scaling functions in one dimension. This might be for two reasons. Firstly, it might be necessary to keep higher-order terms in g in the derivation of the Fokker-Planck equation (1). Secondly, instead of using the distribution  $n_N(x)$  one should use a conditional distribution of two variables x and y in the derivation of (1) and (2), namely the number of previous visits of point x provided that the TSAW ends at point y after N steps.

I would like to thank Professor Dr J Honerkamp for stimulating my interest in polymer physics.

## References

Amit D, Parisi G and Peliti L 1983 Phys. Rev. B 27 1635 Bernasconi J and Pietronero L 1984 Phys. Rev. B 29 5196 de Queiroz S L A, Stella A L and Stinchcombe R B 1984 J. Phys. A: Math. Gen. 17 L45 Family F and Daoud M 1984 Phys. Rev. B 29 1506 Obukhov S P 1984 J. Phys. A: Math. Gen. 17 L7 Pietronero L 1983 Phys. Rev. B 27 5887 Rammal R, Angles d'Auriac J C and Benott A 1984 J. Phys. A: Math. Gen. 17 L9